A Six Sigma-Based Process to Improve COTS Component
Filtering

Alejandra Cechich

Departamento de Ciencias de la Computacion. Universidad Nacional del Comahue

Buenos Aires 1400

8300 Neuquén (Argentina)
acechich@uncoma.edu.ar

Mario Piattini

Departamento de Informatica. Universidad de Castilla-La Mancha
Paseo de la Universidad, 4

13071 Ciudad Real (Spain)

Mario.Piattini@uclm.es

Typically, COTS component evaluations embody a first stage intended to determine rapidly which
products are suitable in a target context. This stage — called “filtering” or “screening” — chooses
a set of alternatives to be considered for identification and more detailed evaluation. For
successful filtering processes, composers increasingly focus on closing the gap between required
and offered functionality, hence reducing ambiguity of information for comparison. However, it is
quite difficult to establish a framework for managing unstructured information at this early stage.
In this paper, we introduce filtering immersed in a Six Sigma-based process, aiming at improving
the filtering process itself as well as its deliverables. We illustrate the proposal by a case study.

Key words: COTS (Commercial Off-The-Shelf) Components. COTS Component Selection.
COTS-Based Project Management. Six Sigma-Based Processes.

ACM Classification: D2.1 -D29-D28-D.2.13

1. INTRODUCTION

The acceptance of COTS-Based Software Development (CBSD) carries along several challenges to
the techniques and tools that have to provide support for it. Some of them are known problems, such
as dealing with Commercial Off-The-Shelf (COTS) component production and integration,
reducing complexity while improving reliability of components, and creating interaction models
and supporting middleware (Cechich, Piattini, and Vallecillo, 2003).

In addition to these difficulties there are other factors that complicate the job of an individual or
group responsible for ensuring COTS-Based system quality. The first factor concerns uncertainty as
to what constitutes the component resource quality. The answer is neither obvious nor simple. One
might be tempted to reply, “quality features of a software element independently implemented and
composed without modification”. What about its documentation? And the degree to which a
component or process meets specified requirements? To narrow the scope, one might suggest
certain key quality features of a composition. But what if these features rely on components from

Copyright© 2007, Australian Computer Society Inc. General permission to republish, but not for profit, all or part of this
material is granted, provided that the JRPIT copyright notice is given and that reference is made to the publication, to its
date of issue, and to the fact that reprinting privileges were granted by permission of the Australian Computer Society Inc.

Manuscript received: 23 September 2006
Communicating Editor: Graham Low

Journal of Research and Practice in Information Technology, Vol. 39, No. 4, November 2007 245

A Six Sigma-Based Process to Improve COTS Component Filtering

unreliable, external sources? Should a composer attempt to work with those sources to improve
quality? Hence, software quality staff must rethink the way software is assessed, including all life-
cycle phases — from requirements to evolution.

When selecting COTS components, there is usually a quick first effort intended to determine
very rapidly which products are unsuitable in the current context. This process, called filtering, can
be initiated as soon as there is at least one relevant alternative to be considered. The initial filtering
might be carried out based on different information to be collected, including vendor capability,
legal aspects on the use of the component, offered functionality, etc. All these evaluations
complement each other, and all of them deserve careful examination. However, functionality
constitutes a main concern since the number of components in the solution must be minimized while
the contribution of functionality is maximized (Abts, 2002).

Here, we should note that a related work by Bianchi, Caivano, Conradi, Jaccheri, Torchiano and
Visaggio (2003), defines the quality characteristic “adequateness” of a COTS product by
considering the application domain, the functionality provided by the COTS product, and its
effective usage within the CBS. Authors have introduced two metrics — “Functional Coverage” and
“Compliance” — to refer to the concept of functionality as broad as possible. Rationale behind our
proposal is similar to those considerations; however, they do not address the problem of calculating
“the number of functionality” as required by the metrics.

PORE (Procurement-Oriented Requirement Engineering) (Ncube and Maiden, 1999) selects
products by rejection, i.e. products that do not meet core customer requirements are selectively and
iteratively rejected and removed from the candidate list. This process shows that increasing the
number and detail of requirement statements will decrease the number of COTS candidates. For
requirements acquisition, PORE divides the process into stages and provides three templates for
three key stages of the process (Maiden and Ncube, 1998). Particularly, the first template is used
during early stages of COTS component selection, when the evaluation team deals with Web site
information, technical documents, market analyses, etc., which are characterized by the lack of
detailed data. One of the problems of the PORE method is that the iterative process of requirements
acquisition and product evaluation/selection is very complex. At any point, a large number of
possible situations can arise, or a large number of processes and techniques to use in a single
situation can be recommended. To handle this scale of complexity, a prototype tool known as PORE
Process Advisor has been developed.

Finally, in the Function Fit Analysis (Holmes, 2004), “fit” is defined as the amount of out-of-
the-box functionality that can be used without any modifications. Using this definition, a
comparison of the requirements function point count to the COTS function point count results in
calculating the “fit” percentage of the COTS. However, what “functionality” means is not addressed
by the proposal.

Although functionality also guides our process, the problem of ensuring component and
component composition quality is exacerbated by the multiplicity of potential problems with COTS
components. Whether you have built your system using COTS components from many vendors, or
a single vendor has provided you with an integrated solution, many of the risks associated with
system management and operation are not in your direct control (Lipson, Mead, and Moore, 2002).
Particularly, selecting COTS is not all about confronting components services against requirements.
For example, some methods include a supplier selection process where the objectives are to
establish supplier selection criteria, evaluate suppliers, rank them according to the criteria and select
the best supplier(s). Our approach focuses on measuring the component’s functional suitability at
early stages; however other criteria such as strategic criteria (cost factors, risk factors), or non-

246 Journal of Research and Practice in Information Technology, Vol. 39, No. 4, November 2007

A Six Sigma-Based Process to Improve COTS Component Filtering

functional criteria (reliability, performance, etc.) could extend the proposal. Here, we should note
that including any additional criteria could complicate filtering; hence, extending criteria should
deserve careful examination.

Spiral approaches define a series of iterations to mitigate risk while addressing the most critical
functions (Biehl, 2004; Boehm, Bose, Horowitz and Lee, 1998; Tayntor, 2002; Tyson, Albert and
Brownsword, 2003). The proposal by C. Albert et al (Albert and Brownsword, 2002), called
Evolutionary Process for Integrating COTS-Based Systems (EPIC), builds upon of the elements of
the Rational Unified Process (Jacobson, Booch and Rumbaugh, 1999) and disciplined spiral
engineering practice (Boehm, 1998). Particularly interesting to filtering is the “Inception Phase”,
which establishes a common understanding among stakeholders of what the solution will do. It ends
when it is demonstrated that one or more candidate solutions can be integrated into the
organization’s architecture. This phase accumulates information to identify measurable criteria that
correspond to preliminary expectations; however the lack of particular measurement procedures —
and metrics — makes this process perfectible.

On these lines, our approach focuses on fact-based decisions and teamwork, which might drive
the identification and filtering process by using specific measures (Cechich and Piattini, 2004c;
Cechich and Piattini, 2004d). Particularly, we consider functional suitability as the main aspect to
be measured; however, measures should be expressed in such a way that calculation is possible at
early stages.

Our main contribution is focused on the introduction of a filtering process based on
improvement. To do so, we built upon the Six Sigma approach and mirrored their phases to facilitate
filtering. Additionally, our process might be extended by classifying and standardizing information
for analysis, building upon some work in this Field (Ayala, Botella and Franch, 2005; Bianchi,
Caivano, Conradi, Jaccheri, Torchiano and Visaggio, 2003; Braga, Mattoso and Werner, 2001;
Jaccheri and Torchiano, 2002; Mielnik, Lang, Lauriere, Schlosser and Bouthors, 2003; Pahl, 2003;
Torchiano and Morisio, 2004).

In this paper, we introduce the Six Sigma-Based process and focus on lessons learned and
managerial implications for COTS component filtering. Section 2 briefly introduces our filtering
process. Then, Section 3 shows our adaptation to Six Sigma and discusses specific techniques.
Section 4 introduces a case study focusing on some of these techniques; and Section 5 illustrates
implications. Finally, we address conclusions and future work.

2. A COTS COMPONENT FILTERING PROCESS
After an exploratory study investigating seven projects, Torchiano et al claim that “Formal selection
procedures are seldom used. Familiarity with either product or generic architecture is the key factor
in selection” (Torchiano and Morisio, 2004). So, although a COTS selection process may be as
important to small projects as it is to larger ones, current processes are sometimes difficult to adopt.
Then, our work was motivated by the fact that many methods and techniques for discovering and
filtering COTS component candidates currently include complex criteria and qualifying thresholds
for selection, and particularly for filtering. Our model was built after analysing different aspects of
component filtering, receiving feedback from scholars and practitioners in the Field. After several
attempts to improve the process, we arrived to the one introduced in this Section.

To clarify the process’s view, the following diagrams summarize it by using the notation
introduced by Marca and McGowan (1988).

Figure 1 shows the external interfaces for the “Filtering” process (Cechich and Piattini, 2005a).
The quality thresholds/organizational constraints control consists of attributes that influence or

Journal of Research and Practice in Information Technology, Vol. 39, No. 4, November 2007 247

A Six Sigma-Based Process to Improve COTS Component Filtering

K quality thresholds/ \
organizational constraints

scenarios

- » filtered components
COTS candidates

software architecture stakeholders/
k component sources J

Figure 1: Contextual view of the filtering process

., impact on stability

constrain systems’ requirements and the filtering process. Typically, the constraint scope will

include aspects such as schedule, cost, context and domain. Quality thresholds represent the

acceptance thresholds associated to quality attributes of the system.

The scenarios input consists of different sequences of behavior depending on the particular
requests made and conditions surrounding the requests; the COTS candidates input consists of a
number of COTS components available from marketplace; and the software architecture input
consists of the architectural basic units, components, and relationships among them. At this level, a
basic unit for architecture is undetermined allowing multiple instantiations — such as compound
units, corresponding processes, etc.

The stakeholders/component sources mechanism consists of people who are involved in the
filtering process. Component sources represent the external resources that are explored in the search
of COTS candidates.

The impact on stability output consists of an identification of functional dissatisfactions
according to the stability state of the architecture. This output might include suggestions for new
requirements or requirement updates discovered during the search for COTS candidates as well as
suggestions for architectural changes (Cechich and Piattini, 2003). Finally, the filtered components
output consists of the component or components chosen for more evaluation as a result of the
filtering process.

There are three primary activities in the Filtering Process: a commitment process, a pre-filtering
process, and a final filtering process, as shown in Figure 2.

The Commitment process in the decomposition contains the following activities (as shown in
Figure 3):

e “Derive Goals” determines the stability status of the system and provides a component
specification to be committed. This activity uses information from scenario and software
architecture specifications. Stakeholders use scenario authoring and goal discovering to elicit
requirements at different levels of detail, and an abstract component specification is provided as
input to the “Compute Preferences” process. Desirability is used to iteratively calibrate the
abstract specification until a committed specification is produced as output. The goals output
consists of goals to be refined and weighted during the “Compute Preferences” process.
Information of functionality and adaptability is used as a refinement constraint, i.e. they drive
the activities helping decide on further searching and evaluation of candidates.

e “Compute Preferences” calculates preference indicators such as desirability and/or
modifiability, and stakeholders’ preferences on refined goals (Cechich and Piattini, 2004b).

248 Journal of Research and Practice in Information Technology, Vol. 39, No. 4, November 2007

A Six Sigma-Based Process to Improve COTS Component Filtering

adaptability report

| quality thresholds /organizational constraints

e 4
scenarios

—

stakeholders

COTS candidates

stakeholder ’s
preferences

stability

committed
specification

functionality
report

pre filtered
components

impact on

component sources

stability

software architecture

filtered

components

Figure 2: Primary activities of the filtering process

The Pre-Filtering process in the decomposition contains the following activities (as shown in

Figure 4):

e “Functional Suitability Measurement” computes metrics on functional suitability of COTS
candidates (Cechich and Piattini, 2004c). Component sources are used as a mechanism to search
candidates. Then, COTS candidates from a marketplace are chosen and Functional suitability
metrics are produced as input to the “Functional Suitability Analysis™ process. The committed
specification acts as a guideline to stakeholders, who drive the search procedure. Information
from functionality is used as a refinement constraint similarly to other activities in the process.

quality thresholds/
organizational

functionality report

constraints
L

Ly

scenarios

software
architecture

stakeholders

stability

committed

AALLAS adaptability
specification

report

component
specificati

desirability

Stakeholder’s
preferences

Figure 3: Commitment process

Journal of Research and Practice in Information Technology, Vol. 39, No. 4, November 2007 249

A Six Sigma-Based Process to Improve COTS Component Filtering

/

committed
specification

COTS candidates

stakeholders

quality \

stakeholder’s | thresholds/
preferences organizational
constraints

Functional
suitability
measures - :
functionality
report
S

component
sources

N

pre-filtered
componeny

Figure 4: Pre-filtering process

“Functional Suitability Analysis” analyses metrics on functional suitability measured for COTS
candidates. A functionality report summarizes the results from the analysis and serves as an
indicator to decide on how to stop the search. Modifiability constrains the analysis taking into
account the degree in which goals can be modified.

The pre-filtered components output consists of the component or components that are

functionally suitable,

and hence candidates for further evaluation.

The Final Filtering process in the decomposition contains the following activities (as shown in
Figure 5):
“Architectural Adaptability Measurement” computes metrics on architectural adaptability (size
and complexity of adaptation, and semantic architectural adaptability) on the given software
architecture and considering a set of pre-filtered components (Cechich and Piattini, 2004d).
Then, architectural adaptability metrics are produced as input to the “Architectural Adaptability

software
architecture

pre-filtered
components

A

stakeholders

quality \

thresholds/
organizational
constraints

stakeholder’s
preferences

architectural
adaptability
measures

adaptability
report
2

impact on stability

filtered
compony

stability

Figure 5: Final filtering process

250

Journal of Research and Practice in Information Technology, Vol. 39, No. 4, November 2007

A Six Sigma-Based Process to Improve COTS Component Filtering

Analysis” process. The software architecture acts as a basis for judgments of stakeholders.
Information from adaptability is used as a refinement constraint similarly to other activities in
the process.

e “Architectural Adaptability Analysis” analyses metrics on architectural adaptability. An
adaptability report summarizes the results from the analysis and serves as an indicator to decide
on reviewing stakeholder’s judgments and/or continuing the search for candidates. The filtered
components output consists of the component or components that are finally filtered. The impact
on stability output reports on the degree in which initial system’s stability is affected by the
filtered components.

3. ADAPTING THE FILTERING PROCESS TO SIX SIGMA
Six Sigma is an approach to product and process improvement that has gained wide acceptance and
has delivered large business benefits across many industries (Biehl, 2004; De Feo and Bar-El, 2002;
Gack and Robinson, 2003; Tayntor, 2002). While the objectives of Six Sigma are to reduce variation
and prevent defects, it is also a management philosophy that includes the need for fact-based
decisions, customer focus, and teamwork. Six-Sigma precepts can guide stakeholders through the
pre-evaluation of COTS components and help increase the probability of success. In Tayntor
(2002), the Six Sigma approach has been suggested selecting packaged software, however the
evaluation mainly relies on the information provided by demos and additional documentation of the
COTS software. Then, the lack of measures makes this process perfectible.

Six Sigma is typically divided into five phases, creating what is referred to as DMAIC, which
is an acronym for the following phases:

1. Define the problem and identify what is important: Identify the problem and the customers;
define and prioritize the customer’s requirements; and define the current process.

2. Measure the current process: Confirm and quantify the problem; measure the various steps in
the current process; revise and clarify the problem statement, if necessary; and define desired
outcome.

3. Analyze what is wrong and potential solutions: Determine the root cause of the problem; and
propose solutions.

4. Improve the process by implementing solutions: Prioritize solutions; and develop and implement
highest benefit solutions.

5. Control the improved process by ensuring that the changes are sustained: Measure the
improvements; communicate and celebrate successes; and ensure that process improvements are
sustained.

Our approach defines the five-phases of the Six Sigma-Based process from the activities
depicted in the previous section. To clarify this point, let us consider the following relationships.

o What should I search? (“Define-Commitment”). In this scenario, the team simplifies
requirements to get functional goals, for example, specified as use cases. Search will be limited
to COTS candidates that prove to be fully functional compatible with respect to these
specifications. So, functional partitioning and decomposition generate what we should search in
traditional way. Participants of the process express their commitment with the required
functionality, thus a committed specification becomes the filtering starting point.

* How should I pick one? (“Measure/Analyze”-“Pre-filtering”). In this scenario, the team applies
functional suitability measures to get suitable candidates to be subjected to further evaluation. A

Journal of Research and Practice in Information Technology, Vol. 39, No. 4, November 2007 251

A

Six Sigma-Based Process to Improve COTS Component Filtering

high-level definition allows us to adapt and calculate the values. So, candidates are pre-selected
according to the resulting values.

How should I pick one based on later integration? (‘“Measure/Analyze”-“Final-Filtering””) Here,
compliance with standards and other architectural issues are broadly analysed during filtering;
allowing the team to suggest changes on designs as well as evaluate other possibilities. It would
lead to reducing risks of selection by analysing incompatibilities at early stages.

What should I know? (“Improve”-“Filtering”) Here, we assume the team knows well-known
software engineering methods and techniques, such as use case modelling; and learns some
others, such as goal prioritisation through goal-oriented graphs. Some of the techniques are
considered optional during the process, and their application depends on the context, which is
clarified before starting. So, learning is reduced by simplifying the search — at the beginning
limited to only functional concerns — and by applying simpler procedures.

When should I stop? (“Improve/Control”-“Filtering”). We have already mentioned that the
results from the functional and/or architectural adaptability analysis serve as an indicator to
decide on how to stop the search. Clearly, as Figure 6 shows, architectural features and software
requirements (scenarios) are the main inputs to drive our search of COTS candidates. From the
architectural point of view, there are some additional remarks. Firstly, the impact on stability is
currently based on qualitative judgements on semantic architectural adaptability, although they
are combined with quantitative values of complexity and size of adaptation. We suggest here
that quantitative and qualitative metrics together would help reach agreement when a decision

A& -

Scenarios/Goals

Stakeholder’s preferences
COMMITMENT

Desirability

ST

COTS candidates Committed S,
_ PRE-FILTERING .
Functional Modifiability

Suitability
Measures

- =D

Software Architecture ’
Pre-filtered K.
Adaptation Complexity HICTERING d

Architectural Adaptability %
M Impact on Stability

Figure 6: The iterative nature of our filtering process

252

Journal of Research and Practice in Information Technology, Vol. 39, No. 4, November 2007

A Six Sigma-Based Process to Improve COTS Component Filtering

on filtering components must be made. However, this agreement is not reached instantaneously.
Secondly, basis for decisions includes detecting architectural artefacts affected by the COTS
candidate and identifying functional dissatisfactions. Causes of dissatisfaction should drive the
process possibly introducing changes on the requirements definition, the host architecture, and
even on the filtering process itself. Therefore, our highly iterative process essentially will stop
when expectations are reached through a COTS solution; or when the effort of searching for
more candidates becomes too costly. Of course, decisions made during the process might be
weighted, in such a way that different roles and stakeholders’ expertise are explicitly
incorporated. Another concern is on actually the number of possible candidates on a
marketplace. Is the searched functionality common enough to be offered by the marketplace?
How easy is finding COTS components actually? Obviously, considerations on when to stop
filtering might be traded-off by considering several other factors.

Additionally, in Figure 7 deliverables are summarized to indicate the existence of

documentation composed of criteria for selection and measures that identify suitability with respect

to a source system. Tools in the Figure refer to well-known tools for quality assessment, as well as
specific tools and measures we proposed for filtering COTS components.

3.1 The Define Phase

To ensure that decisions are fact based, it is important that the “define” phase be reinforced.
Although it is always important to understand the current process and the problem to be solved, the

SELECTING COTS COMPONENTS WITH SIX SIGMA

Initiate, Search and Analyse Prioritise Measure
scope and plan Ymeasure COTS NCOTS solutions , decisions
components candidates and develop vs. /and impro-

measurement measures integrate vements

‘ Define ‘ ‘ Measure ‘ Analyse ‘ ‘ Improve ‘ ‘ Control ‘
‘ DELIVERABLES ‘

3 e Stable int ti
Stakeholder Fu.nctl.o.nal Adaptability Z © I egra; 10nt .
needs and suitability - 1T CEITEE) @ DHEEIE
search criteria measures behaviour
TOOLS

* Benchmarking * Measures for

* AGORA * Measures for _ ’

Graphs functional * Quality standards architectural

* Preference suitability and * Project adapta.blllty
Matrices adaptability management * Quality tools

* Risk analysis

Figure 7: A Six Sigma-based filtering process

Journal of Research and Practice in Information Technology, Vol. 39, No. 4, November 2007 253

A Six Sigma-Based Process to Improve COTS Component Filtering

importance is greater when filtering COTS components because requirements and services must be
balanced as part of a negotiation procedure.

Firstly, COTS component’s required functionality should be expressed to define search goals
and criteria for evaluation. It will produce the first deliverable in Figure 7 called “Stakeholders
needs and search criteria”. To do so, we have adapted the model in Alexander and Blackburn (1999),
which explores the evaluation of components using a specification-based testing strategy, and
proposes a semantics distance measure that might be used as the basis for evaluating a component
from a set of candidates.

According to Alexander and Blackburn, a system can be extended or instantiated through the use
of some component type. Because several instantiations might occur, an assumption is made about
what characteristics the actual components must possess from the architecture’s perspective. Thus,
the specification of the architecture A defines a specification Sc for the abstract component type C.
Any component Ki, that is a concrete instance of C, must conform to the interface and behavior
specified by Sc, as shown in Figure 8 (from Alexander and Blackburn, 1999).

Identifying domains and mappings of Sc is not an easy task. Different scenarios should guide
the process, but taking into account the different goals that are relevant in each stage. Then, goals
are discovered and refined iteratively to reach commitment among all stakeholders involved in the
process (Cechich and Piattini, 2004b).

Let us clarify this point. Suppose we have discovered the relevant goals to be achieved by
components that instantiate the required specification of Sc. But when incorporating COTS
components, goals should be balanced against COTS services. Different sequences of behaviour, or
scenarios can unfold, depending on the particular requests made and conditions surrounding the
requests. The use case collects together those different scenarios (Cokburn, 2001).

Concrete instances i K1 i i K i

potentially satisfying

specification Sc

Specification Sc

What component most closely
Tttt matches the desired idealized
e abstract specification Sc?
Behavioral
(semantics)

Specification for abstract
component C required for A
plug-in to architecture

Figure 8: A required specification Sc for the component C

254 Journal of Research and Practice in Information Technology, Vol. 39, No. 4, November 2007

A Six Sigma-Based Process to Improve COTS Component Filtering

Therefore, having discovered relevant goals from scenarios and with the functional goals of the
component specified by mappings in Sc, the next step is to refine the goals considering the
perspectives of different stakeholders. For example, a reuse architect may be interested in
identifying and acquiring components promoting the value of reuse and ensuring consistency of
design across projects; or a certifier may be interested in setting component specification standards
and ensuring compliance and consistency of components across different teams (Allen and Frost,
2001). Hence, functional requirements are affected by different views that should be conciliated.

Then, the computation of stakeholders’ preference values for the refined goals will allow us to
add preferences to mappings of Sc. To do so, our proposal extends the version of a Goal-Oriented
Requirements Analysis Method, called AGORA (Kaiya, Horai and Saeki, 2002; Kaiya and Saeki,
2004), which is a top-down approach for refining and decomposing the needs of customers into
more concrete goals that should be achieved for satisfying the customer’s needs.

In our context of COTS-based systems, an AGORA graph describes the required specification
of a required component (Sc) according to the scenario S. By using an AGORA graph, we can
estimate the quality of several properties of the adopted goals. Particularly, correctness is assumed
as a quality factor that represents how many goals in a specification meet stakeholders’ needs.
Correctness in AGORA is strongly related to contribution values on the path of the adopted goal as
well as on its stakeholders’ preference value. It allowed us to define and calculate two interesting
indicators for filtering — desirability and modifiability.

Desirability might reduce search and evaluation efforts by detecting functionality on which there
is no enough agreement; and modifiability might help to predict a space of negotiation and change
when constraints from actual candidates are applied. For specific calculations of these indicators,
we refer the reader to Cechich and Piattini (2004b).

3.2 The Measure Phase

Once committed goals have been achieved, we may proceed with the filtering process by applying
different measures on COTS component candidates. Firstly, we produce the “Functional suitability
measures” deliverable in Figure 7 as follows. The metrics are defined considering that only high-
level descriptions of the COTS components are available, without further details on data and control
execution. This assumption is supported by fundamentals of the filtering process, and by the
characteristics of information provided by most components’ suppliers (Bertoa, Troya, and
Vallecillo, 2003).

For the measure definitions, we assume a conceptual model with universe of scenarios S, an
abstract specification of a component C, a set of components K relevant to C and called candidate
solution SO, and a set of pre-selected components from SO, called solution SN. Sc(i) represents the
map associated to the input value i defined in the domain of Sc. This map should provide a valid
value on the output domain of Sc, i.e. there is no empty maps or invalid associations. A similar
assumption is made on the mappings of SK.

Then, the solution in which all components potentially contribute with some functionality to get
the requirements of C is called here SN. Table 1 lists our suite of functional suitability measures,
which are classified into two groups: component-level measures and solution-level measures. For
example, CF. measures the number of functional mappings provided by Sk and required by Sc in
the scenario S; SN measures the number of components that contribute with compatible
functionality to get the requirements of Sc in the scenario S; and so forth. We refer the reader to
Cechich and Piattini (2004c) for a more formal definition of the metrics.

Journal of Research and Practice in Information Technology, Vol. 39, No. 4, November 2007 255

A Six Sigma-Based Process to Improve COTS Component Filtering

Measure Id.

Description

Component-Level

CFc The number of functional mappings provided by Sy and required by Sc in
Compatible Functionality the scenario §

MFc The number of functional mappings required by S and NOT provided by
Missed Functionality Sk in the scenario S.

AFc The number of functional mappings NOT required by S and provided by
Added Functionality S in the scenario S.

CCr Percentage in which a component contributes to get the functionality

Component Contribution

required by S in the scenario S.

Solution-Level

SNcg The number of components that contribute with compatible functionality to
Candidate Solution get the requirements of S in the scenario S.
CFq

Compatible Functionality

The number of functional mappings provided by SN and required by Sc in
the scenario S.

MEFS The number of functional mappings required by S in the scenario S and
Missed Functionality NOT provided by SN.

AFg The number of functional mappings NOT required by S in the scenario §
Added Functionality and provided by SN.

SCr Percentage in which a solution contributes to get the functionality required

Solution Contribution

by Sc in the scenario S.

Table 1: Functional Suitability Measures

There are another types of analysis the component should be exposed before being eligible as a
solution (Cechich and Piattini, 2004d; Davis, Gamble and Payton; 2002). Until now, our set of
measures has only provided a way of identifying suitable components from a functional point of
view. In defining the final filtering phase, a composer should contrast COTS candidates against a
host software architecture, and analyze architectural adaptability on the light of different
stakeholders’ views.

Secondly, we produce the “Adaptability measures” deliverable in Figure 7 as follows.
Adaptability of an architecture can be traced back to the requirements of the software system for
which the architecture was developed. The POMSAA (Process-Oriented Metrics for Software
Architecture Adaptability) framework (Chung and Subramanian, 2001), achieves the need of
tracing by adopting the NFR framework (Chung, Nixon, Yu and Mylopoulos, 2000) that is a
process-oriented qualitative framework for representing and reasoning about NFRs (non-functional
requirements). In the NFR Framework, the three tasks for adaptation become softgoals to be
achieved by a design for the software system. An adaptable component of a software system should
satisfy these softgoals for adaptation. One of the softgoals to be decomposed is adaptability, which
can be further described in terms of semantic adaptability, syntactic adaptability, contextual
adaptability and quality adaptation. We suggested here to combine qualitative and quantitative
metrics to measure architectural adaptability during filtering (Cechich and Piattini, 2004d).

256 Journal of Research and Practice in Information Technology, Vol. 39, No. 4, November 2007

A Six Sigma-Based Process to Improve COTS Component Filtering

3.3 The Analyze Phase

During the second activity of our pre-filtering phase (“Functional Suitability Analysis”), we analyze
results from functional suitability measures. Among others, specification of scenarios, discovery of
goals, quality of specifications, and reliability of measures, are analyzed. For example, information
supplied by third-parties might not be detailed enough to identify required functionality, so a
decision should be made on discharging those candidates, or reviewing and changing the required
specifications. The case study in Section 4 further illustrates this point.

During the second activity of our final filtering phase (“Architectural Adaptability Analysis”),
we analyze results on semantic architectural adaptability. Then, the suitable components should be
analyzed taking into account all features detailed on the adaptability decomposition. Later on, other
characteristics such as security, and interoperability are analyzed, and impact on stability is
determined. To do so, we disaggregate the Architectural Semantic Adaptation goals and we analyze
metrics from the POMSAA framework.

3.4 Improve and Control Phases

These phases are concerned with ensuring that the selected candidates can be integrated and
supported within the required quality; and we produce here the last deliverable “Stable integration
and causes of unstable behaviour”. For example, causes of low architectural adaptability should be
determined, along with causes of functional dissatisfaction. Evaluation of results can reveal
problems that might arise during filtering leading to prioritize solutions deciding on pre-selecting
the COTS components or building the required functionality from scratch. Different architecture’s
uses may necessitate changes to the same components or connections. In such a case, during
filtering we should detect uses that affect the architecture keeping designs with the fewest use
conflicts.

A successful COTS evaluation procedure should communicate its practices and suggests
possible corrective/adaptive actions to sustain its success. Although these activities do not differ
from a traditional system development project or, indeed, from a classic Six Sigma project, they are
important and should not be neglected.

4. A MOTIVATING CASE STUDY: E-PAYMENT BY CREDIT CARD
Let us introduce a motivating case study. For Credit Card Payments, a service provider
intermediates in credit card transaction processing. It implies that the service provider validates
credit card numbers and expiration dates, obtains authorization from the credit card issuers and
issues confirmation numbers to taxpayers at the end of the payment transaction. For the sake of this
case, we suppose that the required functionality will be supplied by COTS components in a
marketplace. So, the next step is to define functional mappings to proceed with the filtering process.
However, according to Yin (1994), external conditions may influence a case remarkably, which
means that especially in conducting multiple-case studies external variables may make replication
and cross-analysis very difficult. In this study, we have compiled different COTS candidates and
analyzed the interfaces, i.e. the functional requirements that a composer has in relation to the market
under study were translated into functional mappings. We should note here that the case perceived
by a composer is influenced by several factors, shown in Figure 9, which affect calculation. In a
particular case, adopting the process will need to focus on those factors and further detail them. As
we can see from Figure 9, perception of a composer will be affected by his own capability and
experience in searching and using COTS components; the complexity of the particular domain
application; the granularity of the component he is looking for; organizational features, such as

Journal of Research and Practice in Information Technology, Vol. 39, No. 4, November 2007 257

A Six Sigma-Based Process to Improve COTS Component Filtering

COTS component market

COTS component description 5 Composer ’s capability
& experience

Organisational __ -~ Domain’s features

features

s v :
K e Granularity
Func_tlonal and "=~ Filtering Process
architectural
descriptions

Figure 9: Influences on the filtering case

institutionalized practices for development and assessment; the description adopted for specifying
functional and architectural features of the target application; the description supplied by vendors;
the availability of products from a COTS component market; and the filtering process itself. All
these factors are instantiated during a particular filtering letting composers adapt it to different
levels of COTS-based development maturity. In this way, any organization may use the filtering
process by only choosing the adequate practices for its level. Of course, the organization should also
suggest improvements to those practices, as our Six Sigma-based approach defines.

Our study is about early detection of COTS candidates, but it is important to emphasize that the
purpose is not to make investigations to find out things such as what supplier companies exist, what
kinds of products are available etc. This kind of work would call for market research in a more
practical sense, and scanning of the market is something that companies need to do. Rather, in our
case the phenomenon under study is the market that a specific composer perceives.

In our case study, we want to analyze a specific case in order to learn more about other cases as
well. Thus, a certain amount of typicality is needed in selecting the case. However, determining the
criteria for typicality may be, of course, a complex task. In this, the most important guideline is the
purpose of the study, which should form the basis for determining the case selection criteria. In
addition to this, other very important issues influencing the selection are factors such as time
limitations and access.

On the basis of the discussed criteria for finding the case, we will focus on the E-payment by
credit card case mentioned above. Electronic payment accomplishes the criteria afore mentioned
since there are more than enough COTS candidates on the market; knowledge is broad enough to
be easily understood; and functionality is split into authorization and capture, which in turn imply
the existence of several functions.

258 Journal of Research and Practice in Information Technology, Vol. 39, No. 4, November 2007

A Six Sigma-Based Process to Improve COTS Component Filtering

4.1 The Define Phase
Generally speaking, “Authorization” and “Capture” are the two main stages in the processing of a
card payment over the Internet. Authorization is the process of checking the customer’s credit card.
If the request is accepted, the customer’s card limit is reduced temporarily by the amount of the
transaction. Capture is when the card is actually debited. This may take place simultaneously with
the authorization request.

From these scenarios, we might produce a simplified abstract specification of the input and
output domains of Sc as follows!:

e Input domain:
°o (AID) Auth IData {#Card, Cardholder_Name, Exp_Date, Bank_Acc, Amount} ;
o (CID) Capture IData {Bank_Acc, Amount} .
¢ Output domain:
°© (AOD) Auth OData {ok_Auth} ;
© (COD) Capture OData {ok_capture, DB_update} .
e Mapping: {AID £ AOD; CID £ COD} .

Then, conflicts on these mappings were analyzed to detect desirability and modifiability as
introduced in Section 3.1 (Cechich and Piattini, 2004b). After reaching commitment, defining
mappings involved two sub-tasks — compiling COTS component information, and translating it into
mappings. To do so, our case study surveyed all COTS components catalogued as members of the
“Credit Card Authorization” group by the ComponentSource organization?. For example, we chose
one component AcceptOnline by Bahs Software?, as a candidate to provide the required function-
ality. To clarify the process of translation into mappings, the following section illustrate this case.

4.1.1 The AcceptOnline Case
AcceptOnline is a COM object that provides credit card processing functionality for developers. It
connects to credit card processor server through the Internet via SSL protocol which guarantees
secure data transfer. To minimize fraud transactions Address Verification Service(AVS) is
supported. AcceptOnline COM object provides the ability to accept credit or debit cards from
Website or Internet-enabled applications. Credit card transactions are processed through the secure
Internet connection (with aid of SSL protocol). As credit card processor the ECHO is used. All
major credit cards are supported. To accept credit cards from a customer we should get merchant
account from credit card processor. AcceptOnline uses ECHO 2 as a credit card processing
organization.

Properties of AcceptOnline are grouped into the following classes: merchant fields, transaction
fields, and response fields. From those classes, we identify:

e Transaction_type: This field identifies the type of transaction being submitted. Valid
transaction types are:
“CK” (System check),
“AD” (Address Verification),

Mappings were identified by discovering and refining goals from scenarios according to Rolland, Souveyet, and Ben
Achour (1998).

Www.componentsource .org

Bahs Software. AcceptOnline - ActiveX DLL - V1.0 . Available at http://www.componentsource.com/ - Access October
2004.

Journal of Research and Practice in Information Technology, Vol. 39, No. 4, November 2007 259

A Six Sigma-Based Process to Improve COTS Component Filtering

“AS”(Authorization),
“ES” (Authorization and Deposit),
“EV” (Authorization and Deposit with Address Verification),
“AV” (Authorization with Address Verification),
“DS” (Deposit), and
“CR” (Credit).
e cc_number: The credit card number to which this transaction will be charged.
e cc_ exp_month and cc_exp_year: The numeric month (01-12) and the year (formatted as
either YY or CCYY) in which this credit card expires.
¢ billing_phone: The shopper’s telephone number.
e grand_total: The total amount of the transaction.
e merchant_email: This is the Email address of the merchant.
e order_ type: This field determines which fields are used to validate the merchant and/or
hosting merchant.
e transactionStatus: Transaction Status. Valid values are: G - Approved, D -Declined, C -
Cancelled, T - Timeout waiting for host response, R - Received.

Methods of AcceptOnline are specified in terms of their main focus and required input.
Particularly, the SendPacket method is used to send the transaction info to the ECHOOnline server,
and required properties should be filled as shown in Table 2 (requirements for CR are partially
listed).

From the AcceptOnline (AOnline) description above, we might derive the following mappings
related to our authorization (AS) and capture (DS) required functionality:

Input domain:

(AOnline.ASI) {billing_phone, cc_number, cc_exp_month, cc_exp_year, counter, debug,
grand_total, merchant_email} ;

(AOnline.DSI) {authorization, cc_number, cc_exp_month, cc_exp_year, counter, debug,
grand_total, merchant_email }

Field CK|AD | AS |ES | EV | AV | DS | CR
authorization Y
billing_addressl
billing_address2
billing_zip
billing_phone

<
o3
=<

ccnumber

cc.exp-month

<<=

cc_exp.year

counter

<

debug

grand_total
merchant_email Y
order_.number

||]] o] ot | <
[]] | |

[||| o]]]
|| [] | |] |

||| | | |
|| f ot | o] o f ot [o

Table 2: AcceptOnline requirements for transactions

260 Journal of Research and Practice in Information Technology, Vol. 39, No. 4, November 2007

A Six Sigma-Based Process to Improve COTS Component Filtering

Output domain:
(AOnline.ASO) {TransactionStatus} ;
(AOnline-DSO) {TransactionStatus}.

Mapping:
{AOnline:ASI £ AOnline:ASO} ;
{AOnline:DSI £ AOnline:DSO}

After comparing AID, CID (from specification Sc) to AOnline.ASI and AOnline.DSI, we can
establish the following correspondences:

AID vs. AOnline . ASI

Cardholder_name — billing_phone
#Card — cc_number

Exp_Date — cc_exp_month, cc_exp_year
Bank_Acc — merchant_email

Amount > grand_total

CID vs. AOnline .DSI
Bank_Acc — authorization and data from AOnline.ASI
Amount — grand_ total

We should note that values of the domains do not exactly match: billing_phone is used instead
of Cardholder_name to identify cardholders; and merchant_email is used for Bank_Acc. Similarly,
ok_Auth, ok_Capture, and BD_Update might correspond to the different values of
TransactionStatus.

However, matching is possible since purpose is similar. Then, similarity is basically determined
by analyzing semantics of concepts with respect to their use. This aspect introduces one of the key
points that will be further discussed later. Just remember that some knowledge is needed to perform
the matching, and consequently, calculate metrics.

4.2 The Measure Phase

From 22 components surveyed in October 2004, we considered 12 for pre-filtering since the other
10 components only differed in terms of their implementations, preserving the same functionality.
Results of our calculations are shown in Table 3. For example, consider the AcceptOnline
case again. Computing measures produces the following results, CF-(AcceptOnline) =
2; MF(AcceptOnline) = 0; AF-(AcceptOnline) = 4; and CCr(AcceptOnline) = 1.

Note that four components provide the functionality required by our scenario. This fact would
indicate that those components are pre-selected for more evaluation, since they are 100%
functionally suitable (CCg=1). For a detailed functional suitability calculations of this case study,
see Cechich and Piattini (2006).

To move into the architectural adaptability measurement — and the final filtering phase — Figure
10 shows our host architecture, whose components should attend the main functionalities of an
electronic payment over Internet. Payment authorization has been further decomposed to allow us
to analyze architectural concerns on the pre-filtered COTS component candidates.

The three-layered architecture is composed of (1) a service interface layer, which sits on top of
a Web server’s basic and handles user interactions; (2) a service implementation layer, which

Journal of Research and Practice in Information Technology, Vol. 39, No. 4, November 2007 261

A Six Sigma-Based Process to Improve COTS Component Filtering

Component

@)
=
S
£
=
o
>
o
o)
@)
gl

AcceptOnline

CCProcessing
CCValidate
CreditCardPack
EnergyCreditCard
IBiz

InaCardCheck
IPWorks
LuhnCheck
PaymentCardAssist
SafeCard

ComponentOneStudio

(=N e L=l LI R =R =R E=N I ST [N N

(=N il il ol) SN ol | SN Eel fol el | SR |]
N[N (D[|O|O
S|IO| O O | |O|= ||| |=|=N

*
*

Table 3: Measurement results for components in the “Credit Card Authorization” category

identifies appropriate credit card payment for the merchant; and (3) a service-related data layer,
which manages access to databases and repositories.

The component (or components) in charge of implementing credit card payment should allow
us to process information for the most commonly used credit cards (Visa, MasterCard, etc.) as well

Service Interface

Trust Payment Corporate
Components Components Components
L L S
5 3 B

Service Implementation

|VISA| | MC | |AMEX| wallet Other

[Components

Trust

Objects SET1 SETZ payment protocol

(gateway)

| HTTP | SSL | S-HTTPl transport protocol
e ok

ey

|1

L4
Servicerelated data
ODBC/JDBC drivers

— — -
w Corp . DB1 Corp . DB2

Figure 10: Host architecture for E-payment by credit card

v
~

>

.
:

262 Journal of Research and Practice in Information Technology, Vol. 39, No. 4, November 2007

A Six Sigma-Based Process to Improve COTS Component Filtering

Adaptation [ECOM]

Semantic
Adaptation
[ECOM]

T
a3

Semantic Svntacti Contextual

Adaptation }éln actie (c)ln cextua Quality
[ECOM, Adaptation Adaptation Adaptation
EPAY] [ECOM] [ECOM] [ECOM]

emantic

adaptation
[Epayment Protocol |

Semantic
adaptation
[Receive Inputs]

Internal Semantic
adaptation
[Verify Data]

|

C;)mpatlbl.llty Interoperability !
of semantic of semantic Security of
adaptation adaptation semantic .
[platform] [cateway] adaptation Integrity of System
[transport | Zu:tomer change
ata
[database] [database]

Figure 11: Architectural adaptability features to evaluate COTS candidates

as defining the possible gateways with which transactions will be processed. All transactions should
be accomplished through a secure HTTPS Post to any supported gateway. Finally, the Java-based
host architecture constrains components to JavaBeans from the marketplace.

By applying the POMSAA framework, we calculated a qualitative measure based on those
architectural features and requirements of adaptability. Original adaptation is OR-decomposed
(shown by the double arc in Figure 11) into the four subgoals — Syntactic adaptation[ECOM],
Semantic adaptation[ECOM], Contextual adaptation[ECOM], and Quality Adaptation[ECOM].

Since we are interested in early detection of architectural concerns, Figure 11 shows a
hierarchical decomposition of semantic adaptation. The semantic adaptation of ECOM can occur in
one of three ways — due to the input receiving layer, which was measured during the pre-filtering
activity; the electronic payment component or the data handling layer. This translates into an OR-
decomposition of the softgoal Semantic Adaptation[ECOM,EPAY] into the three subgoals Semantic
Adaptation[Receive Inputs], Semantic Adaptation[Epayment Protocol], and Internal Semantic
Adaptation[Verify Data].

Semantic Adaptation[Receive Inputs] is not further decomposed due to its main assessment
concerns the pre-filtering stage of our process.

Internal Semantic Adaptation[Verify Data] is delegated to a lower layer of the architecture,
whose functionality should not necessarily be supplied by COTS components.

Finally, in our case, semantic adaptability of candidates was analyzed in terms of compatibility
(platform-related concerns); interoperability (gateway-related concerns); and security (secure
transport and processing). Those features are applied to get the three adaptation characteristics as

Journal of Research and Practice in Information Technology, Vol. 39, No. 4, November 2007 263

A Six Sigma-Based Process to Improve COTS Component Filtering

leaf softgoals for Semantic Adaptation[Epayment Protocol]. It is AND-decomposed into Compat-
ibility of Semantic Adaptation[platform], Interoperability of Semantic Adaptation[gateway], and
Security of Semantic Adaptation[transport].

The values for metrics that we will be coming up with are one of the many possible schemes for
translating preferences into numbers. Figure 11 also gives the maximum and minimum values (the
numbers inside the clouds) for the metrics of different softgoals based on the number scheme (for
a detailed description of the POMSAA algorithms, (Chung and Subramanian, 2001)).

Then, for the four COTS candidates that have passed our pre-filtering process — AcceptOnline,
CCProcessing, IPWorks, and IBiz — we gathered information to characterize the features we
considered relevant and calculated metrics on architectural adaptability as defined previously.

4.3 The Analyze Phase

When analyzing functional suitability, note that our use of scenarios is a brief description of some
anticipated or desired use of a system. In some cases, this diversity of concerns produces fine-
grained functionality described by scenarios, but coarse-grained functionality might be described as
well.

Let us look at the AcceptOnline case one more time. These results indicate that the AcceptOnline
component has proved being 100% (CCy = 1) functionally suitable, and thus a candidate for further
evaluation during the filtering process. Measures also indicate that there are four added functions
(AF. =4), which deserve more careful examination. However, after a closer look at those functions,
we realized that many of them allow for possible variations of the authorization and capture
functionalities — by considering “Address Verification” as complementary to other functions (for
example, “Authorization with Address Verification”). On the other hand, “Credit” is actually adding
functionality, since this function reimburses payments to the cardholder. This function has not been
considered as relevant to our case because credit card payments cannot be cancelled. Taxpayers can
call the credit card issuer or credit card payment service provider’s customer service number to
report problems such as unauthorized charges or concerns regarding payment errors. Finally, the
function “CK” checks the system — a useful supporting function but not domain-oriented, and
therefore not relevant to our case.

Component CFc | MF. | AF | CCg
AcceptOnline 3 0 1 1
CCProcessing 3 0 1 1
CCValidate 1 2 0 0.33
CreditCardPack 1 2 0 0.33
EnergyCreditCard 1 2 0 0.33
IBiz 3 0 1 1
InaCardCheck 1 2 0 0.33
IPWorks 3 0 0 1
LuhnCheck 1 2 0 0.33
PaymentCardAssist 1 2 4 0.33
SafeCard 1 2 0 0.33
ComponentOneStudio 0 3 oA 0

Table 4: Measurement results after changing scenarios

264 Journal of Research and Practice in Information Technology, Vol. 39, No. 4, November 2007

A Six Sigma-Based Process to Improve COTS Component Filtering

Table 4 shows our measures considering the assumptions: (1) including validation with/without
address and reverse authorization as part of the authorization procedure, and (2) splitting
Authorization into two processes — validation and authorization itself. By comparing scores from
Table 3 and Table 4, we illustrate the importance of standardizing the description of required
functionality, and providing a more formal definition of scenarios.

Now, analyzing architectural compatibility, Figure 12 shows the COTS candidate (IBiz) as a
supplier of services required by the E-payment system. Similarly to our requirements
decomposition (Figure 11), the COTS candidate has been AND-decomposed into its main
functionalities — interface, protocol and data management. In this example, we only analyzed
protocol management because interface management concerns to other stages of the procedure, and
data management is not required to the COTS component we are looking for. Therefore, features
analyzed on COTS candidates are limited to how COTS components implement the authorization
and capture by themselves.

Adaptation[ECOM]

Semantic
Adaptation
[ECOM]

S

Semantic Svntacti Contextual

Adaptation yntactic ontextual Quality
[ECOM, Adaptation Adaptation Adaptation
EPAY] [ECOM] [ECOM] [ECOM]

. Semantic
Semantic adaptation
adaptation J [Epayment Protocol]
[Receive Inputs] P
- Internal Semantic
f/ adaptation
[Verify Data]
!
@ ' Compatlbl.hty Interoperability |
] of semantic £ i . !
\ adaptation O SeInene Security of
atf adaptation Performance semantic .
i [platform] [gateway | of semantic adaptation Intignty of System
adaptation [transport | ;: omer change
[service | a datab:
[database] [database]

Interface Layex \/
Protocol Layer
-

Wallet manage:

Figure 12: Architectural adaptability measures for a suitable COTS candidate (IBiz)

Journal of Research and Practice in Information Technology, Vol. 39, No. 4, November 2007 265

A Six Sigma-Based Process to Improve COTS Component Filtering

Then, impact on stability should be determined. To do so, it can be seen that Semantic
Adaptation[ECOM, EPAYT] has a metric of 4, which is the maximum score that Semantic Adaptation
can get (from Figure 11). Claims from Figure 12 (noted as *1) indicate that the metric of 4 given to
the interface service means fully pre-filtering compatibility. Therefore, from the scores of Semantic
Adaptation[ECOM,EPAY], we may assume that the impact on stability is significant and this
component might be filtered as a candidate to be further evaluated.

4.4 Improve and Control

Different interpretations of what is relevant for a particular case, and what is considered as a
supporting function introduce ambiguity to the calculation process. As a consequence, our measures
are affected by a particular scenario’s description since calculation refers to the number of functions
— without further discussion about their particular specification. For example, in our case study,
“validation with address” and “reverse authorization” could be considered as part of an ordinary
credit card authorization process, and hence considered as functional units.

As another example, we could choose a more detailed description of the functionality and
decompose Authorization into “Credit Card Validation” and “Credit Card Authorization”. In this
case, calculation of metrics on provided and missed functionality would be different, and
contribution would show which components partially contribute to reach credit card authorization.

The Analyze Phase would help us to improve the selection and probably the filtering process
itself. For example, from Tables 3 and 4, note that components providing all required functionality
remain unchanged on both tables; and only four components provide authorization and capture as
required in our case (4/12 = 33%). It would indicate that searching a catalogue by category is not
enough to find appropriated components. In our example, better categorizations would help
distinguish credit card validation from authorization. Also it is interesting to note that from the 12
components, only one of them (IBiz) resulted architecturally compatible with our Java-based host
architecture. Of course, the existence of only one suitable component might suggest that a decision
should be made on searching for more compatible candidates (probably from other web portals and
references). In any case, the suitable component should be similarly analyzed taking into account
all features detailed on the adaptability decomposition.

5. LESSONS LEARNED AND MANAGERIAL IMPLICATIONS

Processes or methods to select COTS components may vary depending on different contexts —
experience of the team with the candidate components, experience with a COTS-based development,
and so forth. Particularly, from our case study some lessons learned have emerged as follows.

1. Early measurement of functional suitability can reduce the number of candidates allowing a
more objective value for decision-making. Our case study shows that measurement is possible
at early stages by analysing information of COTS components: from twelve COTS candidates,
only four were pre-selected to be subjected to further analysis. Many conflicts resulted from the
fact that the supplier and the composer focused the COTS component information differently.
However, on the basis of the case analysis, the supply consisted of offerings of different
suppliers, which could be compared in terms of functionality of the component. This means that
although a low level of standardization exists with regard to the component’s description, an
example of matching was possible.

2. Pre-filtering would result in a more effective resource allocation. Although analysing selection
effort was out of the scope of our study, we broadly analysed the impact of our process on a

266 Journal of Research and Practice in Information Technology, Vol. 39, No. 4, November 2007

A Six Sigma-Based Process to Improve COTS Component Filtering

filtering activity. Our case study was run during one week, considering that the average time to
find mappings and calculate metrics for each COTS candidate was between 3-4 hours. However,
the most interesting part was the iterative nature (Six Sigma-Based) of the process, which
allowed us to dynamically analyse supplied functionality as well as requirements from the
system. Requirements could be changed and improved based on a quick review (pre-filtering),
saving time and effort that would have been invested on a deeper analysis of unsuitable
candidates. We should note here that our conclusion strongly depends on the composer’s
experience and background as well as the quality of the requirement specification. Of course,
results would not be the same with low-qualified composers, or confusing requirement
specifications.

3. Early detection of functionality requires that standards on how COTS components are
documented be reinforced. Information gathered from COTS candidates ranged from
description of methods and properties in natural language to description by programming code.
Certainly, this fact introduces ambiguity in some cases, complicates reading in some others,
increases understanding effort, and makes that actual effectiveness of the filtering process be
dependent on the composer’s expertise to detect candidates. When establishing a component
marketplace, one of the specific demands is to provide well-structured information about
components, i.e. a well-structured catalogue. Then, a process to get vendor and product
information should be carried out, where an immediate relationship is established between
information provided by third parties and quality of the catalogue. This issue leads us to
questioning about how information should be structured. For a detailed survey on recent
proposals, see Cechich, Réquile-Romanczuk, Luzuriaga and Aguirre (2006).

4. Composers’ skills actually lead the search. Of course, processes, techniques, and supporting
tools are being defined to improve the filtering process. However, they still rely on how a
composer perceives requirements and offerings. Although every human-intensive process — such
as the ones involved in software engineering — is always affected by human perception,
ambiguity of the processes is usually decreased by using particular notations and standards.
Unfortunately, they are not available for COTS component searching and filtering yet.
Deliverables from our process are a contribution in this sense. They helped us to reduce
ambiguity of information to be analysed and compared from several candidates at early stages.
They also provide us a framework for decision-making, where all candidates were evaluated by
using similar measures. Finally, the defined deliverables allowed us to focus on possible
improvements under the Six Sigma approach (i.e. improving scenarios’ description).

5. Assessing vendor’s reliability is as much important as the identification of functional candidates
itself. We only have to look at our case study and the componentSource* catalogue again. From
there and browsing the Web, we realised that the Bahs Software company is not a component
supplier any more, and consequently AcceptOnline, CCProcessing, and CCValidate were
withdrawn from the marketplace. Additionally, the Energy Programming Ltd. has changed its
EnergyCreditCard component by the “StarFish EFT” component, which is an ActiveX
component for validating credit card data. And PaymentCardAssist by Aldebaran has evolved
into a complete suite called “Internet Commerce Toolkit”. Then, from eleven COTS candidates
in October 2004 (we exclude here the ComponentOneStudio), only five of them remain

4 WwWw.componentsource.org

Journal of Research and Practice in Information Technology, Vol. 39, No. 4, November 2007 267

A Six Sigma-Based Process to Improve COTS Component Filtering

available, and only one is suitable for our case — note that the IPWorks component is now only
supplied as IBiz component. Then, our case study seems typical enough to sustain this lesson.
We are aware that further research is needed to identify criteria for filtering. The point here is to
find the right set of elements to make filtering effective but at the same time fast. In our
proposal, we started from functional suitability and architectural adaptability as criteria for
filtering; however possible extensions might include vendor’s reliability and component’s cost
as well.

6. Classification is not straightforward. As we have seen, our twelve components were catalogued
as members of the “Credit Card Authorization” group by the componentSource organization.
From them, three components supply authorization and capture; seven components supply credit
card validation; and one component — ComponentOneStudio — supplies any kind of
functionality, not necessarily related to a credit card payment. Therefore, better classifications
are needed. They might help facilitate the filtering process by using information about the
catalogue itself. However, producing well-structured catalogues is not an easy task —
component’s granularity and several possibilities in classification make the process difficult.

From our lessons learned, managerial implications come from two points of views. On one
hand, the COTS market itself: our research provided us a deeper understanding of the current
situation of the COTS software component market. It is not merely about creating functional
marketplaces or technical standards for the industry, it is more about composers and suppliers being
interested in operating in relation to a market process and willing to adapt their offerings or needs.
In other words, a COTS component filtering (and selection) is not only about the scope and
definition of the component, but also about buyers and suppliers sharing the same trading rules. On
the other hand, managing the filtering process brings internal implications to composers’ as well as
suppliers’ organisations.

From the composer perspective, implications are on the need of establishing procedures to
define and balance searching goals. Since negotiation of goals is part of a filtering process
inherently, incorporating early measurement might facilitate discussions; i.e. rationale will be more
explicit and funded. However, routinely negotiating and measuring imply that organisations have
understood the COTS component filtering as a commercial trading problem, in addition to a
technical one. Vendor viability and maturity are part of this managerial view. Although this
implication is not new for COTS component trading, our research reinforces their importance.

From the supplier perspective, adequacy to requirements of a market should guide offerings but
might promote other features as well. As a consequence, suppliers should be able to distinguish
contributions, prioritise them, and sustain their permanence in the market. Measurement at early
stages implies that suppliers would be able to quantify contribution; and hence recognize business
opportunities more easily. Of course, our whole managerial view implies that we should move into
a COTS component market, in which improvement is the key element to sustain successful
businesses.

While the fundamental objective of the Six Sigma approach is the implementation of a
measurement-based strategy that focuses on process improvement, some work is still needed to
manage specific software projects. This is the case of COTS-based software development. Precisely
here, our approach becomes a contribution by introducing quality from the beginning. Our tools aim
at supporting a COTS-based development during its early stages allowing us to discover data that
match software requirements and component services. However, matching provided and required

268 Journal of Research and Practice in Information Technology, Vol. 39, No. 4, November 2007

A Six Sigma-Based Process to Improve COTS Component Filtering

services requires not only standardizing information from vendors but also standardizing
requirements for searching. Moreover, some proposals indicate that the necessity of formal
processes for evaluation depends on the context, but the results also confirm the necessity of
accelerating the identification and filtering of candidates through the use of knowledge-based
portals (Mielnik, Lang, Lauriére, Schlosser, and Bouthors, 2003). Complexity of filtering will be
undoubtedly affected; however, the process still might be guided by Six Sigma precepts allowing
us to think of quality from the beginning.

6. CONCLUSIONS AND FUTURE WORK

The adoption of COTS-based development brings with it many challenges about the identification
and finding of candidate components for reuse. To improve the process, we took into account how
to identify suitable COTS components providing an early measure for comparison. We also
considered that the evaluation of COTS candidates demands some inexact matching. Then, the Six
Sigma-based phases of our proposal were further defined by introducing some techniques and
measures, which would help in establishing a basis for reducing risks.

Filtering COTS components needs to ensure, as in any Six Sigma project, that decisions are
based on facts and that customer’s requirements have been considered. However, in the continuing
attempt to introduce CBSD, organisations have problems identifying the content, location, and use
of diverse components. Component composition requires access to tangible and intangible assets.
Tangible assets, which correspond to documented, explicit information about the component, can
vary from different vendors although usually include services, target platform, information about
vendors, and knowledge for adaptation. Intangible assets, which correspond to tacit and
undocumented explicit information, consist of skills, experience, and knowledge of an
organisation’s people. Six Sigma might help to put all these pieces together and define a measure-
based procedure for pre-evaluating COTS components. But collecting effective measures is highly
dependent on the amount and quality of information provided by third parties. Closing the gap
between the required and provided information also implies dealing with standard information for
analysis. On these lines, we are currently extending the filtering process to identify some key
elements towards a knowledge-based process for COTS component identification (Réquilé-
Romanczuk, Cechich, Dourgnon-Hanoune, Mielnik, 2005).

7. ACKNOWLEDGEMENTS

We thank anonymous reviewers for their valuable comments. This work is partially supported by
the CyTED (Ciencia y Tecnologia para el Desarrollo) project (506 AC0287-COMPETISOFT), the
UNComa project 04/E059, and the ESFINGE project supported by Spain (Direccién General de
Investigacion del Ministerio de Educacion y Ciencia, TIN2006-15175-C05-05)

REFERENCES

ABTS, C. (2002): COTS-based systems (CBS) functional density: a heuristic for better CBS design. In Proceedings of the
1Ist International Conference on COTS-Based Software Systems, volume 2255 of LNCS. Orlando, Florida, Springer-
Verlag: 1-9.

ALBERT, C. and BROWNSWORD, L. (2002): Evolutionary process for integrating COTS-based systems (EPIC): An
Overview. Technical Report 20030TR-009, SEI, CMU.

ALEXANDER, R. and BLACKBURN, M. (1999): Component assessment using specification-based analysis and testing.
Technical Report SPC-98095-CMC, Software Productivity Consortium.

ALLEN, P. and FROST, S. (2001): Planning team roles for CBD. In component-based software engineering — Putting the
pieces together, Addison-Wesley.

AYALA, C., BOTELLA, P., and FRANCH, X. (2005): On goal-oriented COTS taxonomies construction. In Proceedings of
the Fourth International Conference on COTS-Based Software Systems, volume 3412 of LNCS, Springer Verlag: 90-100.

Journal of Research and Practice in Information Technology, Vol. 39, No. 4, November 2007 269

A Six Sigma-Based Process to Improve COTS Component Filtering

BERTOA, B. TROYA, J. and VALLECILLO, A. (2003): A survey on the quality information provided by software
component vendors. In Proceedings of the ECOOP QAOOSE Workshop.

BIANCHI, A., CAIVANO, D., CONRADI, R., JACCHERI, L., TORCHIANO, M. and VISAGGIO, G. (2003): COTS
products characterization: Proposal and empirical assessment. In Proceedings of ESERNET 2001-2003, volume 2765
of LNCS, Springer Verlag: 233-255.

BIEHL, R. (2004): Six sigma for software. IEEE Software, 8(2): 68-70.

BOEHM, B. (1998): A spiral model of software development and enhancement. IEEE Computer: 61-72.

BOEHM, B., BOSE, P., HOROWITS, E. and LEE, M. (1998): Software requirements negotiation aids: A theory-W based
spiral approach. In Proceedings of the 17th International Conference on Software Engineering: 243-253.

BRAGA, R., MATTOSO, M. and WERNER, C. (2001): The use of mediation and ontology technologies for software
component information retrieval. In Proceedings of the 2001 symposium on Software reusability: putting software
reuse in context, ACM press, Ontario, Canada: 19-28.

CECHICH, A. and PIATTINI, M.(2003): Defining stability for component integration assessment. In Proceedings of the
Fifth International Conference on Enterprise Information Systems, Angers, France: 251-256.

CECHICH, A. and PIATTINI, M. (2004a): Managing COTS components using a six sigma-based Process. In Proceedings
of the Fifth International Conference on Product Focused Software Improvement, volume 3009 of LNCS, Nara, Japan,
Springer-Verlag: 556-567.

CECHICH, A. and PIATTINI, M. (2004b): Balancing stakeholder’s preferences on measuring COTS component functional
suitability. In Proceedings of the Sixth International Conference on Enterprise Information Systems, Porto, Portugal:
115-122.

CECHICH, A. and PIATTINI, M. (2004c): On the measurement of COTS functional suitability. In Proceedings of the Third
International Conference on COTS-Based Software Systems, volume 2959 of LNCS, Los Angeles, USA, Springer-
Verlag: 31-40.

CECHICH, A. and PIATTINI, M. (2004d): Quantifying COTS component functional adaptation. In Proceedings of the
Eight International Conference on Software Reuse, volume 3107 of LNCS, Madrid, Spain, Springer-Verlag: 195-204.

CECHICH, A. and PIATTINI, M. Piattini (2005a): Filtering COTS components through an improvement-based process. In
Proceedings of the Fourth International Conference on COTS-Based Software Systems, volume 3412 of LNCS, Bilbao,
Spain, Springer-Verlag: 112—-121.

CECHICH, A. and PIATTINI, M. (2005b): Measurement of COTS functional suitability: an E-payment case study, In
Proceedings of the Seventh International Conference on Enterprise Information Systems, Miami, USA.

CECHICH, A. and PIATTINI, M. (2006): Early detection of COTS component functional suitability. Information and
Software Technology, Elsevier (article in press).

CECHICH, A., PIATTINI, M. and VALLECILLO, A. (Eds) (2003): Component-based software quality: Methods and
techniques, volume 2693 of LNCS, Springer-Verlag.

CECHICH, A., REQUILE—ROMANCZUK, A., LUZURIAGA, J. and AGUIRRE, J. (2006): Trends on COTS component
identification. In Proceedings of the Fifth International Conference on COTS-Based Software Systems, IEEE Computer
Science Press.

CHUNG, L., NIXON, B., YU, E. and MYLOPOULOS, J. (2000): Non-functional requirements in software engineering.
Kluwer Academic Publisher, 2000.

CHUNG, L. and SUBRAMANIAN, N. (2001): Process-oriented metrics for software architecture adaptability. In
Proceedings of the Fifth IEEE International Symposium on Requirements Engineering: 310-312.

COCKBURN, A. (2001): Writing effective use cases. Addison-Wesley.

DAVIS, L., GAMBLE, R. and PAYTON, J. (2002): The impact of component architectures on interoperability. Journal of
Systems and Software, (61):31-45.

DE FEO, J. and BAR-EL, Z. (2002): Creating strategic change more efficiently with a new design for six sigma process.
Journal of Change Management, 3(1):60-80.

GACK, A. and ROBINSON, K. (2003): Integrating improvement initiatives: Connecting six sigma for software, CMMI,
personal software process and team software process. Software Quality Journal, 5(4):5-13.

HOLMES, L. (2004): Evaluating COTS using function fit analysis, Q/P management group INC., http://www.qpmg.com

JACCHERI, L. and TORCHIANO, M. (2002): A software process model to support learning of COTS products. /DI NTNU
Technical Report.

JACOBSON, I., BOOCH, G. and RUMBAUGH, J.(1999): The unified development process, Addison-Wesley.

KAIYA, H., HORAI, H. and SAEKI, M. (2002): AGORA: Attributed goal-oriented requirements analysis method. In
Proceedings of the IEEE Joint International Conference on Requirement Engineering: 13-22.

KAIYA, H. and SAEKI, M. (2004): Weaving multiple viewpoints specifications in goal oriented requirements analysis. In
Proceedings of the 11th Asia-Pacific Software Engineering Conference, IEEE Society Press: 418-427.

LIPSON, H., MEAD, N. and MOORE, A. (2002): Can we ever build survivable systems from COTS components? In
Proceedings of CaiSE 2002, volume 2348 of LNCS, Springer-Verlag: 216-229.

MAIDEN, N. and NCUBE, C. (1998): Acquiring COTS software selection requirements, /EEE Software 15(2):46-56.

MARCA, D. and McGOWAN, C. (1988): SADT: Structured analysis and design technique, McGraw-Hill Co.

270 Journal of Research and Practice in Information Technology, Vol. 39, No. 4, November 2007

A Six Sigma-Based Process to Improve COTS Component Filtering

MIELNIK, J-C., LANG, B., LAURIERE, S., SCHLOSSER, J-G. and BOUTHORS, V. (2003): eCots platform: An inter-
industrial initiative for COTS-related information sharing. In Proceedings of the Second International Conference on
COTS-Based Software Systems, volume 2580 of LNCS, Ottawa, Canada, Springer-Verlag: pages 157-167.

NCUBE, C. and MAIDEN, N. (1999): Guiding parallel requirements acquisition and COTS software selection. In
Proceedings of the IEEE International Symposium on Requirements Engineering: 133—141.

PAHL, C. (2003): An ontology for software component matching. In Proceedings of the Sixth International Conference on
Fundamental Approaches to Software Engineering, volume 2621 of LNCS, Warsaw, Poland, Springer-Verlag: 6-21.

REQUILE-ROMANCZUK, A., CECHICH, A., DOURGNON-HANOUNE, A. and MIELNIK, J-C. (2005): Towards a
knowledge-based framework for COTS component identification, In Proceedings of the 2nd ICSE International
Workshop on Models and Processes for the Evaluation of OTS Components (MPEC), Saint Louis, USA.

ROLLAND, C., SOUVEYET, C. and BEN ACHOUR, C. (1998): Guiding goal modelling using scenarios. /[EEE
Transactions on Software Engineering, 24(12):1055-1071.

TAYNTOR, C. (2002). Six Sigma Software Development. Auerbach Publications.

TYSON B., ALBERT, C. and BROWNSWORD, L. (2003): Improving processes for commercial off-the-shelf-based
systems. The Journal of Defense Software Engineering: 17-22.

TORCHIANO, M. and MORISIO, M. (2004): Overlooked aspects of COTS-based development. IEEE Software
21(2):88-93.

YIN, R. (1994): Case Study Research: Design and Methods. In Applied Social Research Methods Series. Sage Publications
Inc. Thousand Oaks, CA, 2nd Edition.

BIOGRAPHICAL NOTES

Alejandra Cechich received a European PhD in Computer Science from the
University of Castilla-La Mancha, Spain and the MSc in Computer Science
from the University of South, Argentina. She is an associate professor at the
University of Comahue, Argentina, where she leads the GIISCo Research
Group. Her interests are centered on conceptual modeling, software quality,
and component technology and their use in the systematic development of
software systems. She is a member of ACM and IEEE Computer Society.
Contact details: Departamento de Ciencias de la Computacion, Universidad
Nacional del Comahue, Buenos Aires 1400, 8300, Neuquén, Argentina;
acechich@uncoma.edu.ar.

Mario Piattini is a full professor at the UCLM. His research interests
include software quality, metrics and maintenance. He gained his PhD in
Computer Science at the Polytechnic University of Madrid, and he leads the
Alarcos Research Group. He is CISA and CISM by ISACA. He is a member of
ACM and the IEEE Computer Society. Contact details: Escuela Superior de
Informdtica, Paseo de la Universidad 4, 13071-Ciudad Real, Spain;
Mario Piattini@uclm.es.

N

Mario Piattini

Journal of Research and Practice in Information Technology, Vol. 39, No. 4, November 2007 271

